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Two-dimensional free-surface flows due to a pressure distribution moving at a 
constant velocity U at the surface of a fluid of infinite depth are considered. Both 
gravity g and surface tension Tare included in the dynamic boundary condition. The 
velocity U is assumed to be smaller than (4gT/p)i, so that there are no waves in the 
far field. Here p is the density of the fluid. The problem is solved numerically by a 
boundary integral equation technique. It is shown that for some values of U,  four 
different flows are possible. Three of these flows are interpreted as perturbations of 
solitary waves in water of infinite depth. It is found that both elevation and 
depression solitary waves are possible in water of infinite depth. The numerical 
results for depression waves confirm and extend the solutions previously computed 
by Longuet-Higgins (1989). 

1. Introduction 
The two-dimensional free-surface flow due to a pressure distribution moving at a 

constant velocity U at the surface of a fluid of infinite depth is considered. The fluid 
is assumed to be inviscid and incompressible and the flow to be irrotational. The 
effects of gravity g and surface tension T are included in the free-surface boundary 
condition. A frame of reference moving with the pressure distribution is chosen, so 
that the flow is steady (see figure 1). At infinite depth the flow is characterized by a 
uniform stream with constant velocity U. 

This problem was previously investigated by Rayleigh (1883) (see also Lamb 1932 
p. 464 and Whitham 1974 p. 451). 

Rayleigh assumed a distribution of pressure of small magnitude and linearized the 
equations around a uniform stream with constant velocity U. He solved the resulting 
linear equations in closed form. His results can be described in terms of the velocity 

Here p is density of the fluid. 
For U > Cmin, Rayleigh’s solutions are characterized by trains of waves in the far 

field. The wavenumber K of these waves satisfies the dispersion relation of linear 
gravity capillary waves : 

9 T  
K P  

u2 = -+-K.  

For U > Cmin, (1.2) has two distinct real roots K = K ,  and K = K ,  < K,. These two 
real roots merge as U+ Cmin. The waves corresponding to KB and K ,  appear behind 
the obstacle and ahead of the obstacle, respectively. 
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u 
FIGURE 1. Sketch of the flow and of the coordinates. 

For U < Cmin, Rayleigh’s solutions do not predict waves in the far field and the 
flow approaches a uniform stream with constant velocity U a t  infinity. This is 
consistent with the fact that (1.2) does not have real roots for K when U < GImin. The 
roots for K are complex when U < Cmin. 

Rayleigh’s solution is accurate for U 4 Cmin in the limit as the magnitude of the 
pressure distribution approaches zero. However it is not uniform as U+ C,,: for a 
given pressure distribution, the displacement of the free surface becomes unbounded 
as U+Cmin. As we shall see, this non-uniformity is associated with branches of 
solitary waves bifurcating a t  U = Cmin. Such a bifurcation has been studied in finite 
depth by Iooss & Kirchgassner (1990). 

In  this paper we solve numerically the fully nonlinear free-surface flow due to a 
pressure distribution. We assume that U < Cmin, so that there are no waves in the far 
field. We show that for some values of U,  four different flows are possible. For small 
pressure distributions, one of these flows is described by Rayleigh’s solution. The 
other three flows are perturbations of solitary waves in water of infinite depth. 
Accurate computations of these solitary waves are presented. It is shown that there 
are both elevation and depression solitary waves. Our results for depression solitary 
waves confirm and extend the flows previously calculated by Longuet-Higgins 
(1989). 

The problem is formulated in $2 and the numerical results are presented in $3. 

2. Formulation 
Let us consider the steady two-dimensional free-surface flow due to a pressure 

distribution acting on the surface of a fluid of infinite depth (see figure 1). At large 
depth the flow is characterized by a uniform stream with constant velocity U. We 
introduce Cartesian coordinates with the x-axis parallel to the velocity U at large 
depth and the y-axis directed vertically upwards. Gravity g is acting in the negative 
y-direction. The origin of the coordinates is chosen on the free surface and the 
pressure distribution is assumed to be symmetric with respect to x = 0. 

We introduce the potential function $(x,y) and the stream function $(x,y). 
Without loss of generality, we choose $ = 0 on the free surface and $ = 0 a t  the point 
x = 0 on the free surface. 

We introduce dimensionless variables by taking TlpUZ as the unit length and U as 
the unit velocity. If u and v denote respectively the horizontal and the vertical 
components of the velocity, we write 

f = $-I-@, 
z = x+iy, 
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u-iv=(@) dz -' =-. 1 

Xq5+iY$ 

We shall seek x++iy+ as an analytic function off, in @ < 0. 
On the free surface the Bernoulli equation yields 

where 
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(2.3) 

(2.5) 

Here EP($) is the prescribed distribution of pressure, B the Bernoulli constant and p 
the density of the fluid. We choose 

otherwise. 

Our assumption of U < C,, so that there are no waves in the far field means that 
u-iv+ 1 as 1 f I --f 00. I t  follows from (1.1) and (2.5) that U = C,, corresponds to 
01 = a. Therefore all our solutions will be characterized by a > t. 

We now apply the Cauchy integral formula to x+ - 1 + iy+ on a path consisting of 
the free surface +k = 0 and a semicircle at  @ = - 00. Since x4 - 1 + iy+ -+ 0 as @ + - 00, 

we have for @ < 0 

Setting @ = 0 in (2.7) and taking the real part we obtain 

the integral being of Cauchy principal-value form. 

symmetry of the flow to rewrite (2.8) as 
Since the pressure distribution (2.6) is symmetric with respect to 4 = 0, we use the 

Relations (2.4) and (2.9) define a nonlinear integro-differential equation for x+ + iy9 
on the free surface. 

We characterize the ' amplitude ' of the free-surface displacement by the distance 
A between the origin of the coordinates and the level of the free surface at infinity. 
Thus 

The definition (2.10) implies that A > 0 for elevation free-surface profiles and 
A < 0 for depression free-surface profiles. 

In order to solve the integro-differential equation ((2.4), (2.9)) numerically we 
introduce the mesh points 

A =  -y at 1+1=co, @ = O .  (2.10) 

= ( I - l ) E ,  I = 1, ..., N ;  
q5y=L$+(I--l)E, I =  1, ..., N-1; 
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FIGURE 2. Values of A versus a. Curve (a) corresponds to B = -0.1 ; (b) corresponds to  E = 0.1. The 
curves bifurcating from a = 0.25 are the branches of solitary waves. The broken curves correspond 
to Rayleigh's solution for E = fO.l. 

and the unknowns 

Here E is the interval of discretization. 
We evaluate (2.9) a t  the points $?. The integral is evaluated by the trapezoidal 

rule with a sum over the points $ I .  The symmetry of the quadrature and of the 
discretization, enables us to evaluate the Cauchy principal value as if it were an 
ordinary integral. 

y; = Y $ ( $ I ) >  I = 1, .*., N .  

This gives x+ ($7) in terms of the unknowns y;. We evaluate 

in terms of y; by finite differences and interpolation. Next we express y(#) in terms 
of y; by integrating y; by the trapezoidal rule. We then substitute all these 
expressions in (2.4) evaluated at $?, I = 1 , . . . , N -  2. This leads to N -  2 equations for 
the N unknowns y;, I = 1, . . . , N .  The last two equations are obtained by imposing the 
symmetry condition y; = 0 and the truncation condition y;J = 0. For fixed values of 
E and a, this system of N nonlinear algebraic equations with N unknowns was solved 
by Newton's method. I n  order to handle the turning points in the ( A ,  a)-plane (see 
next section) we also used a scheme in which E and A are fixed and a is found as part 
of the solution. 

Most of the computations were performed with E = 0.1 1 and N = 400. We checked 
that the results presented are independent of E and N to within graphical accuracy. 

3. Discussion of the numerical results 
The numerical scheme described in $2 was used to  compute solutions for various 

values of a and e .  The properties of the solutions will be described by considering 
plots of A (see (2.10)) versus a (figures 2, 3 and 8). Typical free-surface profiles are 
shown in figures 4-7, 9 and 10. 
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FIQURE 3. Values of A versus u for the branches of solitary waves. The crosses correspond to 
the limiting configurations with trapped bubbles shown in figures 6 ( c )  and 7 ( d ) .  
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FIQURE 4. Free-surface profiles for u = 0.28 and (a) E = -0.1, ( b )  E = 0.1. These profiles are 
closed to Rayleigh’s solution. 

Figure 2 shows two families of solutions corresponding to E = -0.1 (curve a) and 
E = 0.1 (curve b), with turning points a t  a - 0.264 (curve a) and at a - 0.277 (curve 
b). The broken curves in figure 2 are the results predicted by Rayleigh’s solution for 
E = & 0.1. These curves show that Rayleigh’s linear solution is not uniform as 01 + 0.25. 
For a fixed value of E ,  IAl+ 00 aa a -+ 0.25. The solutions corresponding to the portions 
of curves (a) and (b) closest to the a-axis and extending from the turning points to 
a = 00 are close to the solutions calculated by Rayleigh for E small. These solutions 
are perturbations of a uniform stream in the sense that they approach the uniform 
stream with constant velocity U as lel + O .  Typical free-surface profiles for a = 0.28 
are shown in figures 4(a) and 4(b ) .  

The remaining portions of the curves (a) and (b) (i.e. the portions of the curves 
further away from the a-axis and extending to the right of the turning points) are not 
described by Rayleigh’s calculations. Typical profiles for a = 0.28 are shown in 
figures 5 (a) and 5 (b). As I E I  +. 0, these solutions approach solitary wave configurations. 
The branches of solitary waves are shown in figures 2 and 3. Both elevation solitary 
waves (i.e. solutions with A > 0) and depression solitary waves (i.e. solutions with 
A < 0) are possible in water of infinite depth. These waves can be viewed as limits of 
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FIQURE 6. Free-surface profiles of elevation solitary waves for (a) a = 0.26, ( b )  a = 0.275, 
(c) a = 1.6. The profile in (c) has two trapped bubbles at the troughs. A blow-up of one of these 
trapped bubbles is shown in (d ) .  Plotted points are included in ( b ) .  

the solitary waves in water of finite depth of Iooss & Kirchgassner (1990) as the 
depth becomes infinite (see also Dias, Iooss & Vanden-Broeck 1992). Free-surface 
profiles of elevation and depression solitary waves in water of finite depth are shown 
in figures 6 and 7. Numerical values of A and of the maximum slope AS' of the free 
surface profiles are listed in table 1. Here S is calculated by finding the maximum of 
tanT1 ( y6/x4) on the free surface. 

The branches of solitary waves bifurcate from the uniform stream at a = 0.25. 
Figures 6 (a)  and 7 (a)  show that the solitary waves approach a train of periodic waves 
as a -+ 0.25. The amplitude of this train of periodic waves approaches zero as a + 0.25. 
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FIGURE 7. Free-surface profiles of depression solitary waves for (a) a = 0.255, ( b )  a = 0.295, (c) 
a = 0.350, (d) a = 1.36. The profile in (d) haa a trapped bubble at its trough. A blow-up of this 
trapped bubble is shown in (e). 

Elevation solitary waves Depression solitary waves 

a A s a A S 
0.26 0.298 -0.20 0.255 -0.381 0.17 
0.275 0.356 -0.30 0.295 -0.819 0.40 
1.6 0.014 -1.57 0.350 -1.091 0.59 

1.36 --1.274 1.57 

TABLE 1.  Values of the parameters a, A and S for elevation and depression solitary waves 
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FIQURE 8. Values of A versus a. Curve (c) corresponds to a depression solitary wave perturbed by 
a negative ( e =  -0.1) pressure distribution; (d) corresponds to an elevation solitary wave 
perturbed by a positive ( E  = 0.1) pressure distribution. 
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FIQURE 9. Free-surface profiles for a = 0.28 and ( E  = 0.1). Both profiles are perturbations of 
elevation solitary waves. 

As a increases, the solitary waves reach ‘limiting ’ configurations with trapped 
bubbles. The elevation wave has two trapped bubbles (see figures 6c and 6 d )  and the 
depression wave has one trapped bubble (see figures 7 d  and 7e) .  Profiles for larger 
values of a could be obtained by following the analysis of Vanden-Broeck & Keller 
(1980). 

Depression solitary waves in water of infinite depth were previously calculated 
by Longuet-Higgins (1989). Longuet-Higgins computed solutions in the range 
0.35 < a < 1.35. We calculated the solutions shown in figure 3 of his paper and 
confirm his results. Figures 7 ( c )  and 7 ( d )  are in fact profiles corresponding to the 
solutions (f) and ( a )  in figure 3 of Longuet-Higgins’ paper. 

The portions of the curves ( a )  and ( b )  in figure 2 further away from the a-axis are 
elevation and depression solitary waves perturbed by negative ( E  < 0) and positive 
( E  > 0) pressure distributions respectively. It was found that there are also solutions 
which are elevation solitary waves perturbed by a positive pressure distribution and 
solutions which are depression solitary waves perturbed by a negative pressure 
distribution. The corresponding curves in the (A,  a)-plane for E = f O . l  are shown in 
figure 8 (curves c and d ) .  Typical profiles corresponding to a = 0.28 are presented 
in figures 9 and 10. The curve for E = 0.1 in figure 8 is a closed curve (isola). The 
curve for E = -0.1 extends further to the right and only a portion of it is shown in 
figure 8. 
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FIOURE 10. Free-surface profiles for a = 0.28 and ( E  = -0.1). Both profiles are perturbations of 
depression solitary waves. 

Finally, let us comment on the decaying oscillations present on the free-surface 
profiles as 1x1 + 00. These oscillations can be understood by considering the linear 
dispersion relation (1.2). In  terms of the dimensionless variables, (1.2) becomes 

K 2 - K + a  = 0. (3.1) 

For a > t, (3.1) has the complex-conjugate roots $Jl&i(4a-l)$]. Therefore the free 
surfaces are characterized by oscillations of wavelength 47c and of amplitude 
decaying like exp [ - (a-$lx1] as 1x1 + 00. As a approaches a, these oscillations 
approach a slowly modulated train of waves. The existence of such a steady slowly 
modulated wave is consistent with the fact that the group velocity is equal to the 
phase velocity when a = a. Analytical approximations for both elevation and 
depression solitary waves as a+;, will be reported in Dias et al. (1992). 
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